class: center middle main-title section-title-1 # Estimating Causal Effects .class-info[ **Session 15** .light[STA 379/679: Causal Inference <br> Lucy D'Agostino McGowan ] ] --- class: title title-1 # Weighted Estimator .box-1[ `$$\hat{\tau} = \frac{\sum_{i=1}^n Y_i X_i w_i}{\sum_{i=1}^nX_iw_i}-\frac{\sum_{i=1}^n Y_i (1-X_i) w_i}{\sum_{i=1}^n(1-X_i)w_i}$$` ] --- class: title title-1 # Weighted Estimator .box-1[ `$$\hat{\tau}_{ATE} = \frac{1}{n}\sum_{i=1}^n\left\{\frac{X_iY_i}{\hat{e}(\mathbf{Z_i})}-\frac{(1-X_i)Y_i}{1-\hat{e}(\mathbf{Z_i})}\right\}$$` ] -- <br> .box-1[ Is this an unbiased estimator for `\(\tau_{ATE}\)`? ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[We can show that] .box-inv-1[ `$$E\left[\frac{Y_i^{obs}X_i}{e(Z_i)}\right] = E[Y_i(1)]$$` ] -- <br> .box-inv-1[ `$$E\left[\frac{Y_i^{obs}(1 - X_i)}{1 - e(Z_i)}\right] = E[Y_i(0)]$$` ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E\left[\frac{Y_i^{obs}X_i}{e(Z_i)}\right]=E\left[E\left[\frac{Y_i^{obs}X_i}{e(Z_i)}\Big|Z_i\right]\right]$$` ] -- .box-inv-1.medium[Why?] -- .box-1[Law of iterated expectations] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E\left[E\left[\frac{Y_i^{obs}X_i}{e(Z_i)}\Big|Z_i\right]\right] = E\left[E\left[\frac{Y_i(1)X_i}{e(Z_i)}\Big|Z_i\right]\right]$$` ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E\left[E\left[\frac{\color{orange}{Y_i^{obs}}X_i}{e(Z_i)}\Big|Z_i\right]\right] = E\left[E\left[\frac{\color{orange}{Y_i(1)}X_i}{e(Z_i)}\Big|Z_i\right]\right]$$` ] -- .box-inv-1.medium[Why?] -- .box-1[We're only looking at the observations where `\(X_i = 1\)`] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$=E\left[E\left[\frac{Y_i(1)X_i}{e(Z_i)}\Big|Z_i\right]\right]=E\left[\frac{E[Y_i(1)|Z_i]E_X[X_i|Z_i]}{e(Z_i)}\right]$$` ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$=E\left[E\left[\frac{\color{orange}{Y_i(1)X_i}}{e(Z_i)}\Big|\color{orange}{Z_i}\right]\right]=E\left[\frac{\color{orange}{E[Y_i(1)|Z_i]E_X[X_i|Z_i]}}{e(Z_i)}\right]$$` ] -- .box-inv-1.medium[Why?] -- .box-1[ Unconfoundedness (we can split `\(E[Y(1)X]=E[Y(1)]E[X]\)`) ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E\left[\frac{E[Y_i(1)|Z_i]E_X[X_i|Z_i]}{e(Z_i)}\right]=E[E[Y_i(1)|Z_i]]$$` ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E\left[\frac{E[Y_i(1)|Z_i]\color{orange}{E_X[X_i|Z_i]}}{\color{orange}{e(Z_i)}}\right]=E[E[Y_i(1)|Z_i]]$$` ] -- .box-inv-1.medium[Why?] -- .box-1[ propensity score definition: `\(e(Z_i)=E_X[X_i|Z_i]\)` ] --- class: title title-1 # Using the propensity score .footer[Imbens and Rubin (2015) Causal Inference] .box-1[ `$$E[E[Y_i(1)|Z_i]]=E[Y_i(1)]$$` ] -- .box-inv-1.medium[Why?] -- .box-1[ Law of iterated expectation ] --- class: title title-1 #
Application Exercise .box-1[Open `appex-10`] .box-1[Calculate the ATE and ATO estimates for the effect of `satisfied_customer_service` on `next_spend`] .box-1[Knit, commit, push to GitHub]
10
:
00